Ramp secret sharing is a variant of secret sharing which can achieve better information ratio than perfect schemes by allowing some partial information on a secret to leak out. Strongly secure ramp schemes can control the amount of leaked information on the components of a secret. In this paper, we reduce the construction of strongly secure ramp secret sharing for general access structures to a linear algebraic problem. As a result, we show that previous results on strongly secure network coding imply two linear transformation methods to make a given linear ramp scheme strongly secure. They are explicit or provide a deterministic algorithm while the previous methods which work for any linear ramp scheme are non-constructive. In addition, we present a novel application of strongly secure ramp schemes to symmetric PIR in a multi-user setting. Our solution is advantageous over those based on a non-strongly secure scheme in that it reduces the amount of communication between users and servers and also the amount of correlated randomness that servers generate in the setup.